January 23, 2008

Mr. Michael Romero
Oregon Department of Environmental Quality – NW Region
2020 SW Fourth Avenue, Suite 400
Portland, Oregon 97201

RE: Upland Stormwater Source Control Status

Kinder Morgan Liquid Terminals, LLC - Linnton Terminal

11400 NW St. Helens Road

Portland, Oregon

Dear Mr. Romero:

Delta Consultants (Delta), on behalf of Kinder Morgan Liquid Terminals, LLC (KMLT), has prepared this letter to provide the status of ongoing work to evaluate the storm water source pathway for the KMLT Linnton Terminal located at 11400 NW St Helens Road, Portland, OR (Site) (Figure 1). Work summarized in this letter was completed consistent with Delta's approved Storm Water Pathway Evaluation Work Plan (Work Plan), dated October 4, 2006

The scope of work summarized in Delta's *Work Plan* is to assess the storm water pathway in accordance with the December 2005 Joint Source Control Strategy developed jointly by the Oregon Department of Environmental Quality (DEQ) and the USEPA. Specifically, the scope will assess if chemicals from the KMLT Linnton terminal are migrating to the Willamette River at concentrations that potentially pose an unacceptable risk to human health or the environment.

The focus of the work was to first sample and analyze the sites catch basin sediments to identify potential chemicals of interest (COI). Secondly, stormwater discharge was sampled and analyzed for the potential COIs. In the *Work Plan*, Delta proposed to perform four storm water sampling events to further evaluate COIs. Catch basin sediment sampling and analysis was completed in October 2006 and three of the four storm water sampling events have been completed to date. Delta expects the fourth and final storm water sampling event will occur in the first quarter of 2008.

CATCH BASIN SEDIMENT SAMPLING & ANALYSIS AND RESULTS

On October 12, 2006, Delta personnel collected sediment from five catch basins (CB-1 through CB-5) at the Linnton Terminal (Figure 2). Sediment samples were collected in accordance with the methods and procedures described in the DEQs Standard Operating Procedures – Guidance for Sampling of Catch Basin Solids (JSCS 2005b).

Five individual grab sediment samples were collected from each catch basin (one from each quadrant and one from the middle), thoroughly mixed, and composited into one representative sample from each respective catch basin. Field records were kept to document the time of sampling, catch basin location and dimensions, the presence of water, grab sample locations, and the presence of any effluent/influent piping. Composite sediment samples ranged from silt to silty sand with gravel.

Laboratory Results

The five sediment samples representing each of five catch basins (CB-1 through CB-5) were submitted to Test America Laboratories of Beaverton, Oregon for chemical analysis. Analytical results are presented in Table 1 through Table 5. All samples were analyzed for the following.

Analysis	Method	MRL (mg/kg)
GRO	EPA Method NWTPH-Gx	4.67 - 7.81
DRO	EPA Method NWTPH-Dx	150 - 341
ORO	EPA Method NWTPH-Dx	300 - 682
VOCs	EPA Method 8260	0.114 - 4.91
PAHs	EPA Method 8270M SIM	0.0791 - 4.61
PCBs	EPA Method 8082	0.0017 - 0.084
Phthalates	EPA Method 8270-SIM	0.333 - 1.84
Total Metals	EPA Method 6000/7000	0.0878 - 231

Laboratory results were compared against specific stormwater Screening Level Values (SLVs) presented in Table 3-1 of the Joint Source Control Strategy (JSCS) and updated on July 16, 2007 (JSCS, 2005a). SLVs that were used for comparison include the "MacDonald PECs and other SQVs" and the "DEQ 2007 Bioaccumulative Sediment SLVs."

Concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates, and metals were detected in excess of applicable SLVs. Concentrations of diesel-range organics (DRO) and heavy oil-range organics (ORO) were detected; however, there are no established SLVs for these analytes. No VOCs were detected above SLVs. Laboratory results and SLV comparisons for sediment data are presented in Table 1 through Table 5.

STORMWATER SAMPLING & ANALYSIS

Stormwater samples were collected on April 5, 2007, May 24, 2007 and October 24, 2007. Stormwater at the Linnton Terminal is batched in Tank 3034, tested in accordance with the site NPDES permit and, if clean, discharged into the Willamette River. Prior to each sampling event, Tank 3034 was fully drained to eliminate stormwater mixing from previous storm events.

Laboratory Results

Stormwater samples were submitted to Test America Laboratories of Beaverton, Oregon for chemical analysis. Stormwater samples were analyzed for COIs that were identified during the catch basin sediment sampling and analysis investigation and as recommended by the DEQ. The following chemical analyses were performed for stormwater samples using the given method and MDLs:

Analysis GRO DRO ORO PAHs PCBs Phthalates Total Metals	Method EPA Method NWTPH-Gx EPA Method NWTPH-Dx EPA Method NWTPH-Dx EPA Method 8270M SIM EPA Method 8082 EPA Method 8270-SIM EPA Method 6000/7000 APHA/EPA Parameters	MDL (μg/l) 32.7 9.05 86.7 0.00493 – 0.0197 0.0962 – 0.192 0.516 0.000338 – 0.977
Total Metals	EPA Method 6000/7000	0.000338 - 0.977
TSS	APHA/EPA Parameters	2,380
TOC	APHA/EPA Parameters	317

During laboratory analysis, specific MDLs were used for result comparisons against SLVs presented in Table 3-1 of the JSCS and updated on July 16, 2007 (JSCS, 2007a). Results and SLV comparisons are presented on Table 6 through Table 11.

Upland Stormwater Source Control Status Kinder Morgan Liquid Terminals, LLC - Linnton Terminal January 23, 2008 Page 3 of 4

Concentrations of metals were the only analytes detected in excess of applicable SLVs. No other analytes were detected in concentrations that exceeded applicable SLVs. While laboratory attempts were made to achieve the lowest possible MDLs, in some cases MDLs exceeded the applicable SLV. This is noted with the laboratory results and SLV comparisons on Table 6 through Table 11.

DISSCUSSION AND CONCLUSIONS

Beginning in October, 2006, Delta coordinated and conducted sediment and stormwater sampling at the Linnton Terminal in Portland, Oregon in accordance with the approved Work Plan. Catch basin sediment sampling and analysis identified COIs that included PAHs and metals. To date, three (April 2007, May 2007, and October 2007) of four stormwater sampling events have been completed and the final sampling event is scheduled for the first quarter 2008. During the first three storm water sampling events, only metals (Al, Ar, Cd, Pb, Mn, Hg, and Zn) have been detected in excess of applicable SLVs. No other COI has been detected in excess of applicable SLVs.

Please contact Chris Sheridan (Delta) or Timothy Browning (Delta) at (503) 639-8098 if you have any questions regarding the contents of this report.

Sincerely,

DELTA CONSULTANTS

Reviewed by,

Christopher Sheridan **Project Geologist**

Dawna Leong Senior Engineer

Tim Browning, R.G. Senior Manager

Attachments:

Table 1 – Summary of Sediment Analytical Results – TPH & VOCs

Table 2 - Summary of Sediment Analytical Results - Metals

Table 3 – Summary of Sediment Analytical Results – PAHs

Table 4 – Summary of Sediment Analytical Results –Phthalates

Table 5 – Summary of Sediment Analytical Results – PCBs

Table 6 – Summary of Stormwater Analytical Results – TPH

Table 7 – Summary of Stormwater Analytical Results – Metals

Table 8 – Summary of Stormwater Analytical Results – PAHs

Table 9 – Summary of Stormwater Analytical Results – PCBs

Table 10 – Summary of Stormwater Analytical Results – Phthalates

Table 11 – Summary of Stormwater Analytical Results – Parameters

Figure 1 – Site Location Map

Figure 2 – Site Drainage Plan and Sampling Locations

Attachment A – Laboratory Analytical Reports and Chain-of-Custody Documentation

Upland Stormwater Source Control Status Kinder Morgan Liquid Terminals, LLC – Linnton Terminal January 23, 2008 Page 4 of 4

REFERENCE:

JSCS, 2005a (updated in 2007). Joint Source Control Strategy, Table 3-1, Department of Environmental Quality and U.S. Environmental Protection Agency. July, 2007.

JSCS, 2005b. Appendix D: Standard Operating Procedures – Guidance for Sampling of Catch Basin Solids, Department of Environmental Quality and U.S. Environmental Protection Agency. December 2005.

Table 1 - Summary of Sediment Analytical Data - TPH VOCs Linnton Terminal Stormwater Portland, Oregon

the same of the sa				
. ទួលប្រាប់	ම්බාආර්මමන්ම	TEXAD)	्राम्प्रस्थः (क्रायम्	((16/34)) (16/34))
CB-1	10/12/06	401	321	<22.8
CB-2	10/12/06	390	1020	<25
CB-3	10/12/06	<159	390	<24.4
CB-4	10/12/06	38800	4990	<27
CB-5	10/12/06	8280	2750	289
PH 1.5	and the state and the second of the second		the but the same	There were "Walter to a
harrier ar inflation de	land tarbor doint So		en Tri dinant da	N/A
Gor MacDonald PECs and DEQ 2007 Bioaccumul SLVs	other SQVs	N/A N/A	N/A	N/A N/A
MacDonald PECs and DEQ 2007 Bioaccumul	other SQVs ative Sediment ony contaminant detection	N/A N/A s and MRLs above ap	N/A N/A propriate SLVs.	N/A

Table 2 - Summary of Sediment Analytical Data - Metals

Linnton Terminal Stormwater Portland, Oregon

Sampla (D	Sample Date	(Cornellment)	Sections of the section of the secti			Georgian Georgian Georgian		inclie)	. [6] (1) (1)	(ictionis)	ee On Manganese On Manganese	(m://si)		
CB-1	10/12/06	9550	1.38	5.04	201	4.14	96.2	75.1	294	<0.110	487	53.9	<0.578	3540
CB-2	10/12/06	8390	1.2	16.4	150	3.18	74.2	122	341	0.134	482	47.2	<0.608	910
CB-3	10/12/06	9680	1.56	10.7	243	8.84	158	221	430	<0.0924	887	65	<0.622	2330
CB-4	10/12/06	6490	5.79	19.4	138	<0.682	38.2	56.2	1190	0.127	265	27.4	<0.682	414
CB-5	10/12/06	15600	1.48	12.7	489	<1	72.6	209	1600	0.569	521	47.5	<1	1700
				ound fr	ligai qali	ලෝකම්ලා	inglear	enhoji ova	Values		al and a second			
MacDonald PECs	and other SQVs	N/A	64	33	N/A	4.98	1111	149	128	1.06	1,100	48.6	N/A	459
DEQ 2007 Bioacc Sediment SLVs	umulative	N/A	10	7	N/A		N/A	N/A	17	70	N/A	N/A	N/A	N/A

NOTES:

Table summarizes laboratory contaminant detections and MRLs above appropriate SLVs. Appropriate SLV values to be used for initial source control screening are highlighted. Screening Level Values (SLVs) taken from Table 3-1 of the Portland Harbor Joint Source Control Strategy (JSCS) guidance document, dated December 2005.

Bold face font indicates analyte was either detected above or the MDL is above the applicable SLVs.

< = less than the laboratory reporting limit</p>

mg/kg = milligrams per kilogram

Table 3 - Summary of Sediment Analytical Data - PAHs

Linnton Terminal Stormwater Portland, Oregon

செற்றை	erdedine	E Acerepiù dus E	S. Accraphitificats)	S. Annatean S. Annatean S. Annatean	A composite Section (a) Section (b) Section (c) Sectio	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	A Estro(0) A (torrible)	Estro(glad) Erianen	estations) Solverings		සි Diverzo(ඩු)) දින්ඩාබැපපොම	f Saltoranilian S	96.00 19.00 10.00	नि Internol(12/282-ed) निव्यारमा	S Republications	E Preprintens E	
CB-1	10/12/06	<79.1	<79.1	<79.1	<79.1	164	157	259	102	150	<79.1	127	<79.1	158	<79.1	91.1	214
CB-2	10/12/06	<169	<169	<169	538	778	847	964	639	799	213	931	<169	702	<169	444	836
СВ-3	10/12/06	<167	<167	<167	878	1140	1270	1000	1100	1330	258	2270	<167	852	<167	940	1290
CB-4	10/12/06	<4610 ^{1,2}	<4610 ^{1,2}	<4610 ^{1,2}	<922	<922	<1140	<1310 ¹	<922	2120	<922	<4610 ^{1,2}	<4610 ^{1,2}	<922 ¹	<4610 ^{1,2}	<4610 ^{1,2}	1760
CB-5	10/12/06	<1400 ^{1,2}	<1400 ^{1,2}	<1400 ^{1,2}	<700	888	1330	1370	964	1770	<700	1700	<1400 ^{1,2}	979	<1400 ^{1,2}	<1400 ^{1,2}	1490
					Posth	id (thi doire	oliksovi	ത്രത്തി	Sercenting	[Faxe] Astri	ma 🧎	Va					*/.
MacDonald PECs a	and other SQVs	800	2000	£45	1050	17030	N/A	600	13000	1290	1300	2230	536	100	531 I	11770	1520
DEQ 2007 Bloaccu Sediment SLVs	mulative	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

NOTES:

Table summarizes laboratory contaminant detections and MDLs above appropriate SLVs. Appropriate SLV values to be used for initial source control screening are highlighted. Screening Level Values (SLVs) taken from Table 3-1 of the Portland Harbor Joint Source Control Strategy (JSCS) guidance document, dated December 2005.

Bold face font indicates analyte was either detected above or the MDL is above the applicable SLVs.

ug/kg = micrograms per kilogram

< = less than the laboratory reporting limit

⁼ The reporting limit was raised due to dilution necessary for analysis. Sample contains high levels of reported analyte, non-target analyte, and/or matrix interference.

^{2 =} The reporting limit for this analyte was raised due to matrix interference.

N/A = Not applicable or not available PAHs = Polynuclear Aromatic Hydrocarbons

Table 4 - Summary of Sediment Analytical Data - Phthalates

Linnton Terminal Stormwater Portland, Oregon

Semploto	Sample Date	100 PER 100 PE	(Mag	d	- 5 9
			Selection (Co.	3. of the lay	Sound Sound Sound
CB-1	10/12/06	<1270	2020	<1270 ¹	<1270 ¹
CB-2	10/12/06	711	1200	<337	<337 ¹
CB-3	10/12/06	<333	1280	<333	<333 ¹
CB-4	10/12/06	<1840	9520	<1840 ¹	<1840 ¹
CB-5	10/12/06	<1400	3260	<1400 ¹	<1400 ¹
Porten	a lighter not the same	ට ලබා (ලබා ලබා ය	الألفينجا وباللا	llum .	
MacDonald PECs and other S		N/A	800	600	100
DEQ 2007 Bioaccumulative S	ediment SLVs	N/A	330	N/A	60

NOTES:

Table summarizes laboratory contaminant detections and MRLs above appropriate SLVs. Appropriate SLV values to be used for initial source control screening are highlighted.

µg/kg = micrograms per kilogram

Screening Level Values (SLVs) taken from Table 3-1 of the Portland Harbor Joint Source Control Strategy (JSCS) guidance document, dated December 2005.

Bold face font indicates analyte was either detected above or the MDL is above the applicable SLVs.

N/A = Not applicable or not available

<= less than the laboratory reporting limit</p>
= The reporting limit was raised due to dilution necessary for analysis. Sample contains high levels of reported analyte, non-target analyte, and/or matrix interference.

Table 5 - Summary of Sediment Analytical Data - PCBs

Linnton Terminal Stormwater Portland, Oregon

the second of	en anglitismon de fest more fra	n 1000 e	10.024	T OESD	azab.re	17.020B	D.W.C.	1.02001 1.02001	D (RIGHT	r-(1968)
Simple	Scimics	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	diooits	Arodlo	Ziroolo Ziroolo	Arceli	Stroot S	Accelle 1	Coordinate	्राच्ची
L D	Dafe)	E(ha\ka)	(hd/kd)	建数(µg/kg)	(µg/kg)	(µg/kg)	·· (µg/kg)] ·	(µg/kg)	(µg/kg)	(ug/kg)
CB-1	10/12/06	<3.1	<15.5	<6.72	<2.43	<2.08	<1.74	29.7	<1.7	<7.23
CB-2	10/12/06	<16.8	<84	<36.4	<13.2	<11.3	104	70.3	<9.24	<39.2
CB-3	10/12/06	<16.8	<83.8	<36.4	<13.1 ⁻	<11.2	<9.40	29.4	<9.21	39.1
CB-4	10/12/06	<18.9	<94.2	<40.8	<14.8	<12.6	<10.6	<26.9	<10.4	<44
CB-5	10/12/06	<4.67	<23.3	<10.1	<3.65	<3.12	<2.61	<6.67	<2.56	<10.9
		Porti	and Harbo	n Joint Soi	urceContr	oliScreenin	giLevellVa	ues		
	iald PECs ier SQVs	630 0	N/A	N/A	N/A	1600		200	N/A	N/A
Bioaccu	2007 umulative ent SLVs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

NOTES

Table summarizes laboratory contaminant detections and MRLs above appropriate SLVs. Appropriate SLV values to be used for initial source control screening are highlighted.

Screening Level Values (SLVs) taken from Table 3-1 of the Portland Harbor Joint Source Control Strategy (JSCS) guidance document, dated December 2005.

Bold face font indicates analyte was either detected above or the MDL is above the applicable SLVs.

μg/kg = micrograms per kilogram

< = less than the laboratory reporting limit

N/A = Not applicable or not available

PCBs = Polychlorinated Biphenols

Table 6 - Summary of Stormwater Analytical Data - TPH
Linnton Terminal Stormwater

Portland, Oregon

Sengple Wealtheath	Date Sampled	TPHG	712H-D	પ્રાથ: 11281-©
		(H2/I)	(PO/I) -	(pg/0)
T3034	04/05/07	54.50	483.00	190.00
T3034	05/24/07	<32.7	0.11	<0.0901
T3034	10/24/07	<80.0	<245	<490
Pontend Hen	an John Santa Gorns	al Sociating Le	wal Values	
Tap Water PRGs	de a como de la	N/A	N/A	N/A
DEQs 2004 AWQC (Organism o	nly)	N/A	N/A	N/A
DEQs 2004 AWQC (Chronic)		N/A	N/A	N/A
EPAs 2004 NRWQC (Organism	only)	N/A	N/A	N/A
EPAs 2004 NRWQC (Chronic)		N/A	N/A	N/A
Oak Ridge National Laboratory	(Tier II SCV)	N/A	N/A	N/A
NOTES: TPH-G analysis by Method NWTPH-TPH-D and TPH-O analysis by Methology Methology N/A = not available ug/I = Micrograms per Liter				ž.

Table 7 - Summary of Stormwater Analytical Data - Metals Linnton Terminal Stormwater Portland, Oregon

Samplo lilmililedien	Cáb Emplei	an Attentions	Authinomy Officering					e encontraria			Aritistics	(North		(Olivan)		19 12 (m:40)
T3034	04/05/07	0.052000	0.000245	0.000257	0.011200	<0.000128	0.000144	0.000650	0.001930	0.001410	0.042200	0.002580	0.001180	<0.0000117	0.000045	0.103000
T3034	05/24/07	0.0302	0.000368	<0.000531	0.0182	<0.000102	0.000096	0.000512	0.00204	0.00157	0.0901	<0.000338	0.00159	<0.000097	<0.0000145	0.072
T3034	10/24/07	0.123	<0.0008	<0.0008	0.0142	<0.0008	<0.0008	<0.0008	0.00231	0.00402	0.0489	0.0000109	0.0023	<0.0008	<0.0008	0.128
			i de la		Portlan	g Herbord	apris Sonice	Control 8	e centro t	eveliValue	5.416		45.00			
MCL		N/A	Ø@® ∖	0.01	N/A	N/A	0.005	0.0	N/A	N/A	0.050	0.002	N/A	0.1	N/A	5
Tap Water PRGs		37	0.015	0,000045	N/A	N/A	0.018	N/A	1.4	15	1.7	0.011	0.73	0.18	N/A	11
DEQs 2004 AWQC (only)	(Organism	N/A	0.64	0.00014	N/A	N/A	N/A	N/A	N/A	N/A	0.1	0.000146	4.6	N/A	N/A	26
DEQs 2004 AWQC	(Chronic)	N/A	1.6	N/A	N/A	N/A	0.00038	N/A	0.0036	0.00054	N/A	0.000012	0.049	. 0.00012	N/A	0.033
EPAs 2004 NRWQC only)	(Organism	N/A	0.64	0.00014	N/A	N/A	N/A	N/A	N/A	N/A	0.1	N/A	4.6	N/A	N/A	26
EPAs 2004 NRWQC	(Chronic)	0.087	N/A	0.15	N/A	N/A	0.000094	N/A	0.0027	0.00054	N/A	# 0,000 <i>077</i> 7	00010	N/A	N/A	_ 0.088
Oak Ridge National (Tier II SCV)	i Laboratory	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

NOTES:
Table summarizes laboratory contaminant detections and MDLs above appropriate SLVs. Appropriate SLV values to be used for initial source control screening are highlighted. Italic face font indicates the laboratory method detection limit exceeds one or both SLVs.

Bold face font indicates analyte was detected above the applicable screening levels presented in Table 3-1 of the Portland Harbor JSCS guidance document, dated December 2005 and updated in 2007. Total Metals Analysis by EPA 6000/7000 Series Methods

N/A = not available

mg/l = Milligrams per Liter

Table 8 - Summary of Stormwater Analytical Data - PAHs Linnton Terminal Stormwater Portland, Oregon

Sourb Etudiation	(Lettyan Being	Smalpy Smithing an	S. Certifican	g, ceensimiylens	Anthreens	Eanzo(t) Coffingento	2 (Emzo(n))(2)(cm3)	Enizold)	Establish (M)	Erro(17). Erro(17).	Elizado	olisaro(cid).	Filteranthero	altrocence (altrocence)	्रे शारकेळाडूत इस्ट्राम्बर्गस	. Augustratum	Committee of the state of the s	S. Brant
T3034	04/05/07	N/A	<0.00493	<0.00493	<0.00493	<0.00493	<0.00493	<0.00493	<0.00493	<0.00493	<0.00493	<0.00493	<0.00493	<0.00493	<0.00493	<0.00985	<0.00493	<0.0197
T3034	05/24/07	<0.0494	<0.0494	<0.0494	<0.0494	<0.00494	<0.00494	<0.00494	<0.0494	<0.00494	<0.00494	<0.00494	<0.0494	<0.0494	<0.00494	<0.0494	<0.0494	<0.0494
T3034	10/24/07	<0.0952	<0.0952	<0.0952	<0.0952	<0.00476	<0.00476	<0.00476	<0.0952	<0.00476	<0.00476	<0.00476	<0.0952	<0.0952	<0.00476	<0.0952	<0.0952	<0.0952
						eHleneUno	क्रिकारीचीतीह	ovjeo@on	trol/Screenin	io (roka) As	pros.				All C		3.18	
MCL		02	02	0.2	02	0.2	0.2	0.2	02	0.2	0,2	0.2	/02	√ 102 A	0.2	√. 02 ···	0.2	. 102
Tap Water PRGs .		N/A	370	N/A	1800	0.092	0.0092	0.092	N/A	0.92	9.2	0.0092	1500	240	0.092	6.2	N/A	180
DEQs 2004 AWQC (Orga	anism only)	N/A	990	N/A	40000	0.018	0.018	0.018	N/A	0.018	0.018	0.018	140	5300	0.018	N/A	N/A	4000
DEQs 2004 AWQC (Chro	onic Receptors)	N/A	520	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	620	N/A	N/A
EPAs 2004 NRWQC (Or	ganism only)	N/A	990	N/A	40000	0010	.000	0.018	N/A	0.018	0018	0.010	140	5300	-0.013	N/A	N/A	4000
EPAs 2004 NRWQC (Ch	ronic)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Oak Ridge National Lab SCV)	ocratory (Tier II	2.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

NOTES:
Table summarizes taboratory contaminant detections and MRLs above appropriate SLVs. Appropriate SLV values to be used for initial source control screening are highlighted.

Italic face font indicates the laboratory method detection limit exceeds one or both SLVs.

Bold face font indicates analyte was detected above the applicable screening levels presented in Table 3-1 of the Portland Harbor JSCS guidance document, dated December 2005 and updated in 2007.

PAHs analyzed by EPA Method 8270M-SIM N/A = not available

ug/l = Micrograms per liter

Table 9 - Summary of Stormwater Analytical Data - PCBs

Linnton Terminal Stormwater Portland, Oregon

Sample Mentification	Date Sampled	Arceler 1016	/Yrodlor (1923)	<u> शहर</u> ्य	Arcelor (1922)	Arcelor 1223	ीखनीवा 123त	Aroelor (PSO
			(MeNT)	(MeAT)	(pe/0)	(Me/D)	(hte/fl)	(MeM)>
T3034	04/05/07	<0.0962	<0.192	<0.0962	<0.0962	<0.0962	<0.0962	<0.0962
T3034	05/24/07	<0.0485	<0.0971	<0.0485	<0.0485	<0.0485	<0.0485	<0.0485
T3034	10/24/07	<0.190	<0.381	<0.190	<0.190	<0.190	<0.190	<0.190
	ારિકાર્યીકાર્ત્ય ફિલ્મોરિકા	John Sonk	e Confid	l Screenli i	o revelo	ilues:		
MCL		N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tap Water PRGs		0.96	0,034	6.084	0.084	0.084	0.034	0.064
DEQs 2004 AWQC (Or	ganism only)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
DEQs 2004 AWQC (Ch	ronic)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
EPAs 2004 NRWQC (O	rganism only)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
EPAs 2004 NRWQC (C	thronic)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Oak Ridge National La SCV)	aboratory (Tier II	N/A	N/A	N/A	N/A	N/A	0.088	N/A
H		7.						

NOTES:

Table summarizes laboratory contaminant detections and MRLs above appropriate SLVs. Appropriate SLV values to be used for initial source control screening are highlighted.

Italic face font indicates the laboratory method detection limit exceeds one or both SLVs.

Bold face font indicates analyte was detected above the applicable screening levels presented in Table 3-1 of the Portland Harbor JSCS guidance document, dated December 2005 and updated in 2007.

PCBs analyzed by EPA Method 8082

N/A = not available

ug/l = Micrograms per liter

Table 10 - Summary of Stormwater Analytical Data - Phthalates

Linnton Terminal Stormwater Portland, Oregon

Complete April 1985		opaja Vijeto	aulyd Refere	Hanity)	ें जिल्लाम् जिल्ला	Footy)	2-ethyll phtirellet O
Sample Mandine den	instra estudiran					语是 (如如)	
Т3034	04/05/07	<0.516	<0.516	<0.516	<0.516	<0.516	N/A
Т3034	05/24/07	<0.526	<0.526	<0.526	<0.526	<0.526	<0.526
T3034	10/24/07	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952
	Portend Her	jou joiling Son	(நார் ஹ	Sociativo lie	vol Values ⁱ		
MCL		N/A	N/A	N/A	N/A	N/A	N/A
Tap Water PRGs		370000	29000	3700	7300	1500	4.8
DEQs 2004 AWQC (Org	janism only)	1100000	44000	4500	1900	N/A	2.2
DEQs 2004 AWQC (Chr	ronic)	3	3		8	8:7	3
EPAs 2004 NRWQC (O	rganism only)	1100000	44000	4500	1900	N/A	22
EPAs 2004 NRWQC (CI	hronic)	N/A	N/A	N/A	N/A	N/A	N/A
Oak Ridge National La SCV)	boratory (Tier II	N/A	N/A	N/A	N/A	N/A	N/A

NOTES:

Table summarizes laboratory contaminant detections and MRLs above appropriate SLVs. Appropriate SLV values to be used for initial source control screening are highlighted.

Italic face font indicates the laboratory method detection limit exceeds one or both SLVs.

Bold face font indicates analyte was detected above the applicable screening levels presented in Table 3-1 of the Portland Harbor JSCS guidance document, dated December 2005 and updated in 2007.

Phthalates analyzed by EPA Method 8270-SIM

N/A = not available

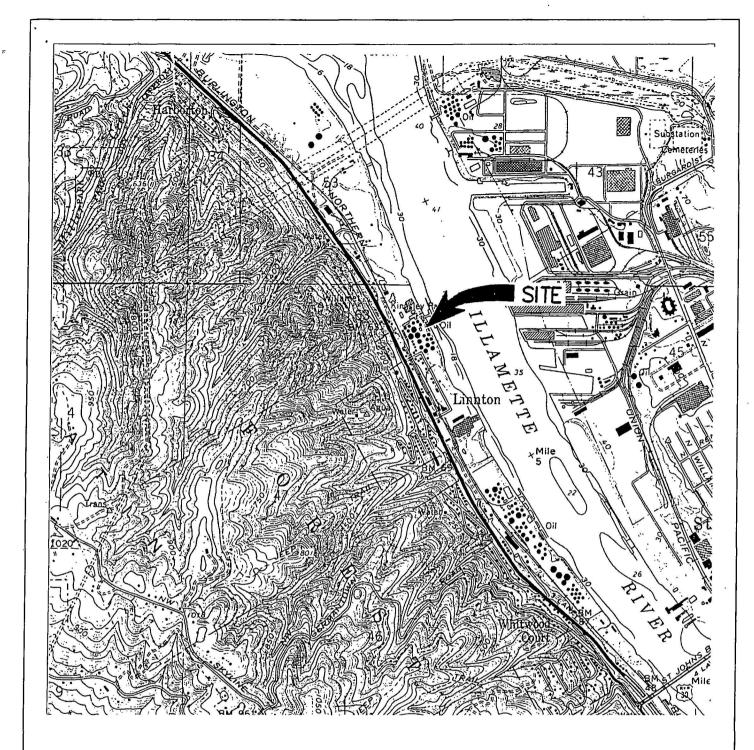

ug/l = Micrograms per liter

Table 11 - Summary of Stormwater Analytical Data - Parameters Linnton Terminal Stormwater

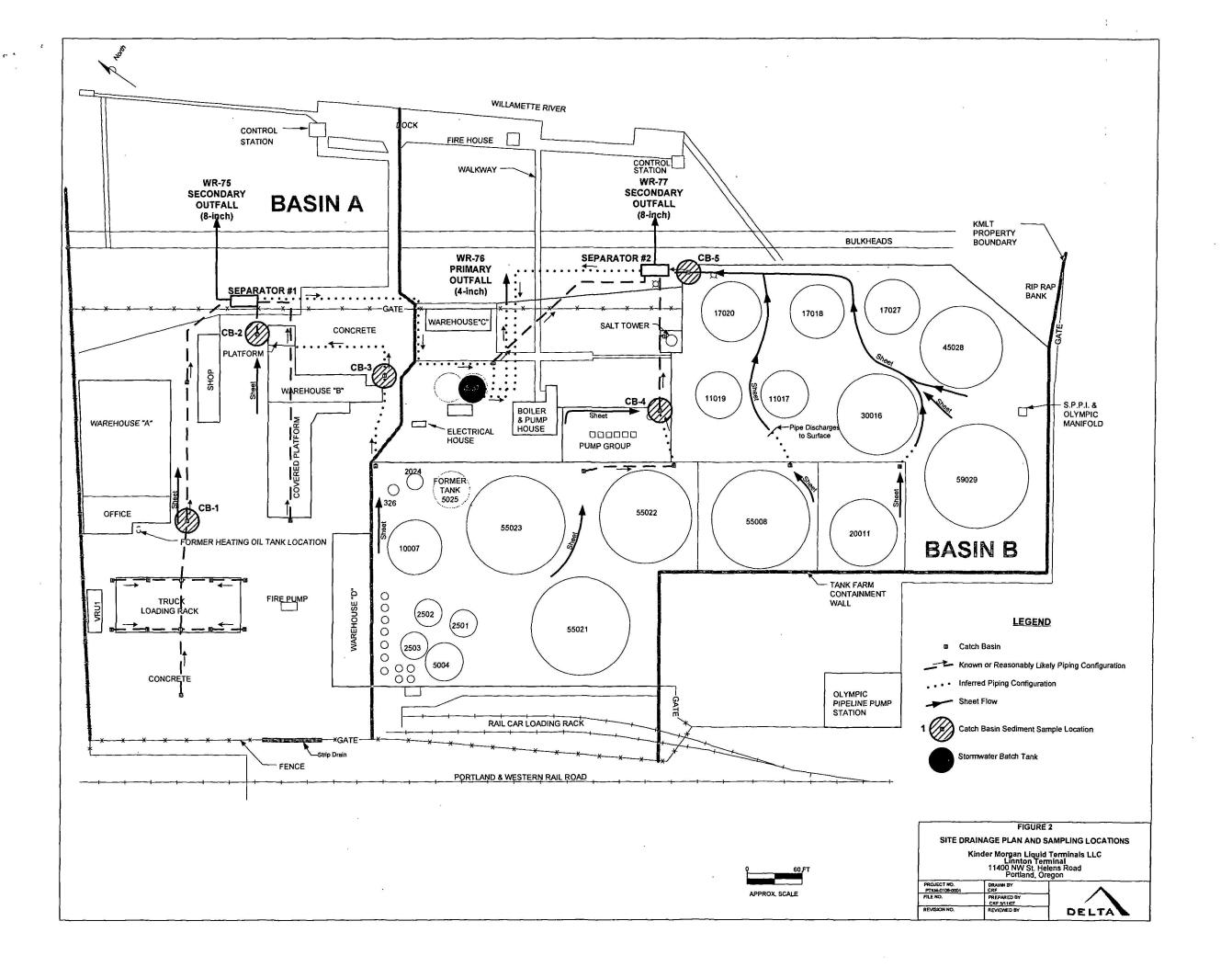
Portland, Oregon

Sample		A SERVICE CONTROL	TOG
े विद्याशिक्यांका	Date Sampled 🦸	(mg/LL)	(mg/L)
T3034	04/05/07	4.0	1.95
T3034	05/24/07	8.0	1.99
Т3034	10/24/07	10.0	2.11
Largenog findense	Sloine Contol S	aceaniolrexal(Ash	jes j
MCL		N/A	N/A
Tap Water PRGs		N/A	N/A
DEQs 2004 AWQC (Organism only)		N/A	N/A
DEQs 2004 AWQC (Chronic)		N/A	N/A
EPAs 2004 NRWQC (Organism only)		N/A	N/A
EPAs 2004 NRWQC (Chronic)		N/A	N/A
Oak Ridge Nationa SCV)	Laboratory (Tier II	N/A	N/A
NOTES: Paramters analyzed ug/l = Micrograms per TSS = Total Suspeni TOC = Total Organio N/A = not available	ded Solids	s	

FIGURES

REFERENCE: USGS 7.5 MINUTE TOPOGRAPHIC MAP LINNTON, OREGON, 1961 PHOTOREVISED 1984

SCALE 1:25,000


FIGURE 1

SITE LOCATION MAP

Kinder Morgan Liquid Terminals LLC - Linnton Terminal 11400 NW St. Helens Road Portland, Oregon

PROJECT NO. PTKM-010-11	DRAWN BY CRF	
FILE NO.	PREPARED BY CRF 4/4/07	
REVISION NO.	REVIEWED BY	

